
JOURNAL OF

Journalof GeometryandPhysics 10 (1993) 315—343 GEOMETRYA7.~D
North-Holland PHYSICS

Existenceanduniquenessof solutionsto
superdifferentialequations

J. Monterde
Dpto. deGeometriay Topologia, Facultad deMatemáticas,Universitatde València,

C/Dr. Moliner50, 46100-Burfasot(València),Spain

O.A. Sánchez-Valenzuela2
CentrodeInvestigaciónenMatemáticas;Apdo. Postal, 402; C.P. 36000Guanajuato,Gto., Mexico

Received28 May 1992
(Revised9 October1992)

We state andprove the theoremof existenceand uniquenessof solutionsto ordinary
superdifferentialequationson supermanifolds.It is shownthat any supervectorfield, X =

X
0 + X1, hasa uniqueintegral flow, I’: ~ >< (M,AM) —* (M,AM), satisfying a given

initial condition. A necessaryandsufficient condition for this integral flow to yield an
O~~

1-actionis obtained:the homogeneouscomponents,A’o, and,X
1, of thegiven field must

define a Lie superalgebraof dimension(1, 1). The supergroupstructureon ~ I~,however,
hasto be specified:thereare threenon-isomorphicLie supergroupstructureson R’ II, all
of which haveaddition asthegroupoperationin the underlyingLie groupt~.On the other
extreme,even if X0, andX1 do not close to form a Lie superalgebra,the integral flow
of X is uniquely determinedandis independentof theLie supergroupstructure imposed
on R

1I1. This fact makesit possibleto establishan unambiguousrelationshipbetweenthe
algebraicLie derivativeof supergeometricobjects (e.g., superforms),andits geometrical
definition in termsof integral flows. It is shownby meansofexamplesthat if a supergroup
structurein J1111 is fixed, someflows obtainedfrom left-invariantsupervectorfieldson Lie
supergroupsmay fail to defineanR~’-actionof thechosenstructure.Finally, necessaryand
sufficient conditionsfor the integral flows of two supervectorfieldsto commutearegiven.
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1. Introduction

We prove herethe theoremof existenceanduniquenessof solutionsto su-
perdifferentialequationson supermanifolds.This workisbasedon two previous
approaches—eachonefollowed by eachof the authorsseparately(refs. [7] and
[91,respectively).Both predecessorpapersdealtwith the problemof integrat-
ing supervectorfieldson supermanifolds,but the resultsreachedby eachone of
themwereonly partial. In ref. [7], a uniqueway of integratingevensupervector
fieldswasobtained,but ad hoctechniqueswererequiredfor the odd ones.Even
so, not all of them could havean integral in the sensedefinedthere; integral
flows in ref. [7] dependedonly on onerealparametert ~ l~l.On the otherhand,
the approachin ref. [9] providedabetterway of making senseof the ordinary
differential equationdefinedby any supervectorfield. This was achievedby
introducingff~II1as the parametersuperspaceto carry out the integration, and
by usingthe evaluationmorphismon points to completelydeterminethe COG

functionsthat build up the flow. The proofof the theorem on existenceand
uniquenessof solutionsthere,was basedon the ideasof the pioneeringwork of
Shander[131: To determinefirst the normal forms for the superfieldsso as to
actuallycarryout theintegrationon thesimplestcoordinateversionof each.The
normal-formproblem,however,was not solvedin ref. [9], andthe theoremwas
thereforeprovedonly for asubclassof supervectorfields: thosehavinga normal
form in 111h11. Nevertheless,theseincludedthe knownexamplesin the literature
so far, andprovidedsomenew ones(cf. refs. [5,2,13]).

We arenow very pleasedto communicatein this paperthe beststatementof
the theorem,and its most unrestrictedproof: i.e., one without any regard on
parities,normal forms, special integratingparametersor techniques,etc. (cf.
theorem3.5, below). But beforegiving the details, it is pertinentto makesome
commentsaboutthe natureof the problem,the natureof our approach,andthe
significanceofthe results.

First of all, the problemof posingordinarydifferential equationson super-
manifolds (or, on any similar geometriccategory),combinesthe supervector
field to be integrated,X, with the solutionof the equation,F, so as to F-relate
X with somefixed derivationD in the integratingparametersuperspace,T. We
call the pair (T,D) the integratingmodelfor the equation.Thus, the starting
point is alwaysthe equation,

D0F* =F~oX, (1.1)

(cf. section2 belowfor precisedefinitionsandstatements).SinceF* is a map
of superalgebras,it preservesthe Z2-grading,andtherefore,eq. (1. 1) mayim-
mediatelybe split into two equations;namely,

D0oF* = F*o Xo and D1 oF* = 1*0 X1, (1.2)

where,X = X0 + X1, andD = D0 + D1, arethe corresponding12-decomposi-
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tionsof X, andD. In particular,to integrateodd superfieldsonerequiresat least
anon-zeroD1. On theotherhand,sincethesupercommutatorsof two F-related
derivationsareagainF-related,it follows from (1.2) that

[D0, D1] 0 1* = F
t 0 [X

0,X1] and [D1, D1] 0 1* = 1* 0 [X1, X1 1. (1.3)

Theserelationsmayproducesomenon-trivial conditionson the superfieldsX
to be integrateddependingon the valuesof [D0, D1], and[D1, D1 1. It is natural
to assumethat the integratingparametersuperspaceT is a Lie supergroup,and
thatD0, andD1 areleft-invariantsupervectorfields, so thatthey form a (1, 1)-
dimensionalLie superalgebra.If thisis the case,thereare real constantsa, and
b (andin fact, a b = 0), suchthat

[D0,D1] = aD1 and [D1,D1] = bD0. (1.4)

In particular,if F
t happensto bemonic (cf. ref. [1]), (1.1) becomesawell-posed

equationonly for thosesuperfieldssatisfyingthe “integrability conditions”,

[X
0,X1] = aX1 and [X1,X1] = bX0. (1.5)

Thereare, however,various reasonsto pursuit the ideathat any supervector
field mustbe integrable,in the senseof giving rise to an integralflow, F: Y x
(M,AM) —~ (M,AM). In fact, an integralflow for anysuperfield is neededin
orderto relatethe dynamical (geometrical)definition of the Lie derivativeof
anysupergeometricalobject (e.g., superdifferentialforms), to its corresponding
algebraiccharacterization.The latter usuallymakesgood sense,no matterwhat
superfieldis chosento takethederivativealongto. Thebestexampleat handis
this: the Lie derivativeof anysuperformw, maybe definedalgebraicallyby

= i(X) 0 dw + do i(X)w, (1.6)

without imposingconditionslike (1.5) on X. Onewould like to understandthis
formulaasthequantitativeresultof ageometricalassertion:therateof changeof
w alongthe flow generatedby X. In particular,onewould like to concludethat
when the Lie derivativeof somethingis zero, that somethingdoesnot change
alongtheflow. This is thecrucialstepin provingsomegeometricalassertions.To
quotea concreteexample,let usmention thatthis resultis neededto showthat
the integralflow of a supervectorfield actsby supersymplectictransformations,
if andonly if it is superhamiltonian(seefor example,refs. [10,12]; seealsorefs.
[6, 11] for the basicsof supersymplecticsupermanifolds).

The way to suppressthe conditionson the homogeneouscomponentsof the
field, andto produceauniquelydeterminedintegral flow for any supervector
field, is to posethedifferentialequationin termsof theevaluationmorphismon
pointsof the superparameterspaceT. This waspreciselythe maincontribution
of ref. [9]. We recall that in the categoryof supermanifoldsthereis aunique
terminal object:a singlepoint with the constantstructuresheafE~1.It is natural
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Table

~t( (t
1,r~),(t2,r2)) D0 D1

Type 1 (t1 + t2,r1 + ~2) Di

Type 2 (t~+ t2 + lit2, ri + r~) D1 D~+ rD1

Type 3 (t1 + 12,12 + e

12t

1) Di + tD~ D~

in termsof it to produceanevaluationmorphismon points,andto makesense
of, ev1110,as a morphismof superalgebras.Thus, thedifferentialequationmust
be (cf. section2 belowfor the precisedefinitions),

evltto o Do F
t = ev~

110o 1*0 X. (1.7)

Whatremainsthenisto selectaspecificintegratingmodel,(T, D). Now, theeven
part of any supervectorfield on (M, AM) canonicallyprojectsontoa smooth
vector field X on M whose integral flow alwaysdefines (locally, at least) an
actionof the additivegroup~ on M. Therefore,it is only naturalto requirethat
~ed = ~, and the underlyingsmooth map ~ of the Lie supergroupoperation
u: T x T —p T be addition in 11. On the otherhand, letting D0, andD1 be left
invariant supervectorfields, the possible choicesare forced by the following
procedure:First, determineall the (1, 1)-dimensionalLie superalgebrasover
the reals.Then,look attheir correspondingconnected,simplyconnected,(1, 1)-
dimensionalLie supergroupshavingaddition as their underlyingoperationin
~. Finally, realize D0, andD1 as left invariant supervectorfields. It turns out
that therearethreedifferent (1, 1)-dimensionalLie supergroupstructureson
i~’I~extendingadditionon 11. We shall labelthesestructuresby the numbers1,
2, and3. Thus,if (1.4) is satisfied,the correspondingLie supergroupstructures
on l~11,andtheir left invariantsupervectorfieldsare given accordingto table

(TheLie supergroupstructureof type 2 is locally isomorphicto the supermul-
tiplicative structuregivenby ~u( (t1, r1 ), (t2, r2) ) = (t1t2 + rita, t1t2 + t2t i).)

Note thatD = D0 + D1, is alwaysof the form:

D = at + a~+ ‘rD’.

Now, one can prove that the integral flow obtainedwhen usingD is exactly
the sameas thatobtainedwhenusing

8~+ 8~(cf. section2.3 below). In other
words,for thesolepurposeof determiningtheintegralflow, F: ~ x (M, AM) —~

(M, AM), the detailedsupergroupstructureon ~ ~ is irrelevantas long as the
differentialequationis posedas in (1.7).Whenit furthermorehappensthatthe
homogeneouscomponentsof the supervectorfield do form a (1, 1)-dimensional
Lie superalgebra,the differentialequationmaybe posedas in (1.1) withoutthe
evaluationmorphism,anda Lie supergroupactionof the ~1}I supergroupcor-
respondingto thatLie superalgebrais definedby the integralflow (cf. theorem
3.6 below).
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Notethat conditions(1.5) havenothing to do with the integrabilitycriteria
givenby Frobeniustheoremon the bundlethat trivializes the particular super-
manifold on which X is defined: eqs. (1.5) arestrongerbecausea andb are
real constants.Whentheseconditionsarenot satisfied,all whathappensis that
the integralflow doesnot behavelike the real one-parameterexponentialof a
C°°vectorfield. The integralflow exists,but it fails to definea Lie supergroup
actionof l~’I’ on (M, AM). Thisphenomenonmightbeexaggeratedif adefinite
integratingmodel is fixed. For example,fixing the Type 1 supergroupstructure
as the integratingmodel (T, D), the integral flow obtainedfor a non-evenleft
invariant supervectorfield on the Lie supergroupGL( 11) (i.e., the multiplica-
tive supergroupstructureon D~’1’)doesnot defineaLie supergroupactionof Y.
The reasonis of coursethat the Type 1, andType 2 structuresarenot isomor-
phic: Theexponentialmorphism—understoodas the“point” determinedon the
supergroupby flowing alongthe integral “curve” of a left invariant supervec-
tor field after a unit of “time” from someprescribedinitial direction—doesnot
providea Lie supergrouphomomorphismin this case.

The main resultsof thiswork (theorems3.5, and3.6) arepresentedwith no
commitmentto anyparticulartypeof supergroupstructureon ~ ~ Ouroriginal
approachmadeuseof aspecificchoice(Type 1) arguingthat for sucha super-
group structurethe correspondencethat makesit possibleto view an arbitrary
sectionof the structuralsheafof a givensupermanifoldas a morphismfrom the
supermanifoldinto i~h11was addition preserving.However, M. Rothsteinhas
pointed out to us that in so doing one leavesout someof the interestingLie
theoreticphenomenaarising from the integrationprocess.Besides,almost no
new work had to be done in order to presentthe resultsin the more general
settingbecausethe actualcomputationof the integralflow F doesnot depend
on the Lie supergroupstructureof ~ 1 1

The paperis organizedas follows: section2 gives the basicdefinitions,and
it is basedon ref. [9]. The variousLie supergroupstructureson ~ P aregiven,
andit is shownthat for the actualdeterminationof the flow only a~,anda1 may
be used.Section 3 statesthe theoremof existenceanduniquenessof solutions.
Its proofis considerablyreducedto the proofof the sametheoremfor an even
superfield,X0, but this is preciselythe theoremproved in ref. [7], which we
translateso as to fit with our generalschemehere. Following refs. [10,12],
we define in section4 Lie derivativesof superformsin terms of our integral
flows andshow thatonemay computetheseLie derivativesalgebraicallywith
only interior multiplication, andexteriordifferentiation,as expected.Finally,
section 5 providesthe details for determining the left invariant supervector
fields of the different Lie supergroupstructuresof lVI’. Needlessto mention
the relevanceof havingsettledthe integrationquestion,as it is afundamental
tool in someapplications.Concretely, we are thinking of some physical and
geometricalconsiderationsinvolving the Euler—Lagrangeequationsstudiedin
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ref. [8], andHamilton’s equationsstudiedin refs. [10,12]. We alsohopethat
the methodsdevelopedherewill be of somehelp in the infinite dimensional
theoryof superintegrablesystemsdevelopedmainly in ref. [4].

2. The ODE problem on supermanifolds

2.1. DEFINITIONS, CONVENTIONS, AND NOTATION

We shall refer the readerto refs. [3,51 for definitions. Our conventionsare
the following: A supermanifoldshallalwaysmeana real supermanifold;it is a
pair, (M, AM), with M somern-dimensionalrealsmoothmanifold,andAM the
structuresheafof real superfunctionson M. A morphism(M,AM) —4 (N,AN)

is a pair W = (W,~P*),with W: M —~ N continuous, and iP*: AN(N)
amapof IR-superalgebrascommutingwith restrictions.The ter-

minal objectis ({*}, li); a pointwith the algebraof constantson it. The terminal
morphism,(M,AM) —* ({*},IR) shall be denotedby C. By definition, asuper-
manifold hasa preferredembedding,ó: (M, C~)—~ (M, AM); its superalgebra
map, 5*: AM(M) —~ C~(M)shallbe written, f ~ f. Eachpoint x ~ M de-
fines a_morphism&: ({*},R) —* (M,AM), by letting, ó~t:AM(M) —* ER, be,
f i—4 J’ (x). The composition~ C givesa superalgebramap closely related
to this: f i—~ f(x)1AM(M). Note that the domain can be any supermanifold.
We shall write C~,and~ insteadof 0~~C, and(O~0 C)t, respectively.In
products,with underlyingpoints (x,y) E M x N, the notation evi’ standsfor
(C~x idN)t it pulls backsuperfunctionson M x N to superfunctionson N.

An (m,n )-dimensionalsuperdomainshall alwaysbe understoodas a coordi-
natesuperdomain;i.e., an opencoordinatedomain, U, in someER~,and the
exterior bundle,AER~,basedon the trivial rank-n-bundle,EW’, over U. When
U = ER°~,the correspondingsuperdomain,(ERm,F(AER~)),shall be denotedby
ERmIn It is convenientto write u c ERm[n for the restrictionof the structuresheaf
F(AER’~)on ER’~,to the opendomainU c ERtm Thus,U = (U,F(AWt) ~

2.2. ODE’S ON SUPERDOMAINS

Let (M, AM) be asupermanifold,andlet DerAM be thesheafof superderiva-
tionsofAM (M). Supervectorfieldson M aresectionsof DerAM.Eachsupervec-
tor field X definesin a uniquefashionasmoothvectorfield, X E Der C°°(M),

by letting,X(f) X
0(f), for eachf ~ AM(M) (cf. ref. [3, section2.81).It is

well knownthatX, givesrise to acollectionof smoothmaps,~ for which
the following is true (cf. ref. [151):

For eacht ~ ER, thereexistsa maximalopensubsetV~(X) c M, anda smooth
map, çb1: V1(X) —~ M, suchthat
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(i) ~1(x) = y(t,x),foreachxE V~(X),’ybeingtheuniqueintegralcurve of
X throughx at t = 0, anddefinedon its maximaldomain {t E ER I XE J~(X)}.

cii,) ~ ~‘(X) —* V_1(X) is a diffeomorphismwhoseinverseis qLt.
(iii~) V0(X) = M, ~o = idM, and V1(X) c ~2(X), if t, > t2 > 0, or

t,~t2~0.
(iv) U1>0 fr~(X)= u1<0 J~(X)= M.

Furthermore,foreachxE Mthereisan opensubsetV~(X)cM, andsome�>0,
suchthat themap(t,y) i—4 c~t(Y)is smoothanddefinedon (—c,e) x Vx(X).

In particular,the subsetV(X) = {(t,x) E ER x M x E V~(X)} is open,anda
smoothmap~ : V(X) —# M can be definedby ~(t,x) = ç~1(x);equivalently,
thereis a well definedhomomorphism~*: C°’~(M)—# COG(V(X)),qY’(f) =

f o ~, which is the uniquesolutionto the equation

Do~ =~oX (2.1)

subjectto the initial condition ç~(0,x)= x. We havewritten D for the lift to
V(X) of the vectorfield d/dt definedon ER. This lift is uniquelydefinedby the
conditionsDop,

t = p,to d/ dt, andDop
2

t = 0; Pi,andP2 beingtheprojections
of V(X) c ER x M into the correspondingfactors.Note that (2.1) is equivalent
to the following equationin C°’°(M):

ev1
11 0 D 0 = evJ1~0 0 X, (2.2)

for each to E p,(V(X)). Now let Vx be the opensubsupermanifoldof ER” x
(M,AM) whoseunderlyingsmooth manifold is V(X). A solution to the ~

gradeddifferentialequationdefinedby X, is a supermanifoldmorphism,

F:VX—-4AM, (2.3)

suchthat, for eacht0 E ER,

ev111 oD oFt = evI1 oFt OX, (2.4)

subjectto the initial condition,

Fo (C0 x id) = id. (2.5)

Equality (2.4) is setbetweensuperderivationsof the sheafAM. We havewritten
D for the lift to V~of a preferredsuperfield,D, on ER’~’ (cf. section2.4 below).
This lift is definedby the conditions D 0 ~ = p,

t 0 D, and D 0 P2t = 0;

P,, and P2 beingthe projectionsof Vx into the correspondingfactors (which
are opensubsupermanifoldsER” and (M, AM), respectively).The evaluation
morphismevIt,rto is usedto pull the superfunctionsin Vx backto (M, AM) (cf.
refs. [5,9,11). Note that the initial condition (2.5) maybe rewrittenas,

ev1
10F

tf = f, (2.6)

for anysuperfunctionf E AM.
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2.3. ON THE ROLE OF THE EVALUATION MORPHISM

It is worth ourwhile to actuallyappreciatethe differencebetweeneq. (2.4)
and

DoFt = FtoX. (2.7)

In orderto do this weshallwork on the supermanifoldERmln, andwe shallwrite
equations(2.7),and (2.4) in local coordinatesfor anarbitraryderivationD in
~ Let {t,T} be a set of local coordinatesin ER’t1. There is no lossof generality
in assumingthat the integrationmodel is locallyof the form

D = (1 + c)a
1 + (1 + /3r)a1, (2.8)

where~t, and/3 aresmoothfunctionsof t. Now, let {x’; O~},be a set of local
coordinatesin U c ERmt~~.Let X be somegiven supervectorfield on U, andwrite
it in theselocal coordinatesas

x = ~ (At + ~A~OV + ~A~VO~O~ + ...) a~

+ ~ ~ + + ~BP~VO~OU+ ...)ao~. (2.9)

Let F bea morphismER’~~x U —* U. We shallwrite it in coordinatesas

F
tx’ = y~+ ~y~rO~’ + +

= ~ ~ gf~~OAOP6v+...,
(2.10)

where,in fact, we shouldhavewrittenp,tz, andp
2*OP, insteadofjust r, and0,

as wejustdid, for the local coordinateson ER” x U (Pj beingthe projectiononto
the jth-factorof the productER” x U). Let us furthersimplify the notation,and
write

F
tx’ =

F*0~ = t(g~) + g~+ ...) + (g~)+ g(
3) + ..•), (2.11)

where ‘(k)’ denotesthe Z-degreeof homogeneityin the odd variables{ 00 }.

Then,

F
tXx’ = (ytA’ + ~ y(

0)
tA~,g~’,)+ ...)

+ t (~y(Ø)tA~g~)+ ~y*aAiyJ +...)~
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F*XOP = (y(Q)tB°+ ~ y(~)B~g~’
1)+ ...)

+ t (~Y(o)*B~g~~o)+ ~y(o)*aXJB0y~,) +...)~ (2.12)

whereusehasbeenmadeof the fact that for any COG functionf on U, F
tf is

givenby f ° y~o)+ r ~ y~0°a~f° y(o~+ .... On the otherhand,wehave

DFtx’ = (Y~o)’+ Y(
2) + ~ + (/(,) + Y(3) + ~

+ rEa (Y~o)’+ Y~2) + ) + (Y(,) + Y(3) + ,)

+ fl(~1 + Y(3) + ‘,

Dr
t 00 = (ga) + g(

2) + ~ + (g~,)’+ g(3) + ~

+ r[(g~)’ + g~2)+ ) + a(g~)’+ g(3) + ~

+ fl(g~)+ g(2) + ~~)] (2.13)

If the definitionofthe superdifferentialequationis given withouttheevaluation
morphismin front of it, theselocal-coordinateexpressionsyield two separate
systemsof equations;namely

Y(o) = y(o)
tA’, g(

0) =

Y(1) = ~y(o)A’g~’,) g(,) =

(2.14)

and

~ = ~ y(0)A~g(O), g(0) + g~= ~ )‘(o)B~g(O),

+ flY~,)= ~Y(O)aXJA’Y~,), (~g =

= ..., ... = .... (2.15)

It is intuitively clear from theseexpressionsthat a uniquesolution exists to
the first set of equations:The first equationin (2.14) is classical. Its unique
solution,Y(o)~maybe pluggedinto the equationright in front of it to determine
uniquely the coefficients g~O).In fact, y~o~must be pluggedinto every single
equationof the system.The next equationto solve is the secondon the right
in order to determineuniquelythe g(,)s. Thengo to the equationon the left
to determinethe Y(1)S in termsof the g~,)’s.It is clear that this “shoe-lace”
mannerof solvingthe first set completelydeterminesthecoefficientsof theflow
in a uniquefashion.Now, thesecondset of equationsarisesfrom thecoefficients
of r. Sincethe flow coefficientsarealreadydetermined,the secondset mustbe
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thoughtof as identitiesthat ought to betrueamongthe coefficientsof the given
superfield.If no restrictionsare imposedon the superfieldsto be integrated,
the secondsetof equationsshould not be thereat all. The way to do this is
preciselyby formulatingthe differential equationof the superfieldX with the
evaluationmorphismin it, sothat the equality (2.7) really meansa congruence
(modi); but this is preciselywhat eq. (2.4) says.We shall see in theorem3.6
belowpreciselyunderwhat circumstancesthe superdifferentialequationcan be
posedwithout the ev-map.

2.4. ON THE CHOICE OF THE INTEGRATING MODEL

Notethatoncethe ev-ma,pis madepart of the definition, the systemof equa-
tions obtainedfrom the modelD, andthatobtainedfrom themodelD + iD’ are
exactlythe same.Thiscanbereadily seen,eitherfrom the fact that evI1 ~ = 0,
or from thecoordinateexpressionsabove.(Notethatthesystem(2.14)obtained
from thefull derivationD, is exactlythe sameas theoneobtainedfrom a1 + a1).

Now, onemayarguethatif somepair of homogeneousfields, D0, andD,, is
chosenas model for the integrationof all supervectorfields, they must form a
Lie superalgebra.In fact, D0, andD, mustgeneratethe Lie superalgebraof left
invariant supervectorfields on a (1, 1)-dimensionalLie supergroup.If further-
more, the integrationtheory of supervectorfields is requiredto reproducethe
COG theoryunderthe canonicalmorphismA~j—k C~,the underlyingLie group
mustbe ER with its additivestructure. It is well known (and easyto see)that
up to isomorphismthereareonly three (1, 1)-dimensionalLie superalgebras;
labelingthem with j = 1, 2, and 3, their structuremay bedisplayedas follows
(multiplying D0 by a constantif necessary,onemayassumethata = 1, or b =

in (1.4)):
[Do,D,1 = O~,3D, and [D,,D,] =

To realizeD0, andD, as supervectorfields satisfyingthesecommutationrela-
tions on the (1, 1)-dimensionalLie supergroup,local coordinates{t, t} may be
chosenin such away that

D0 = a1 + ata1 and D, = a1 + b~91, (2.16)

wherea andb are real constantssatisfyingab = 0. (If the constrainton D0,
andD,, to generateoneof the Lie superalgebrasabove is not imposed,a, andb
would be arbitrarysmoothfunctionsof t). By formal exponentiationof the Lie
superalgebraelementsoneobtainsformally some‘Lie supergroupelements’from
which the supergroupoperationmay be obtained.Now, for the sakeof clarity
we shall statefirst the explicit operations,~i~: ER” x ER’t’ —~ ER’

t’ (j = 1, 2, and
3) thatendowER’t’ with a Lie supergroupstructure(propostion2.1 below),and
recovera posteriorithe correspondingleft invariantsupervectorfields (section
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5 below). Thus, we havethe following resultwhoseproof is a straightforward
verification usingthe techniquesof ref. [1]:

Proposition 2.1. Let {i, i} be the standardsupercoordinatesystemon ~ (i.e.,
t is the linearfunctional ER —i ER dual to the basiselement 1 E ER, and t is the
generatorofA(ER t)

t dual to tt). Thereare threedifferent supergroupstructures
on ER” whosecompositionmorphisms,~u

1:ER” x ER” -~ ER” (1 = 1, 2, 3), are
respectivelygiven by thefollowingsuperalgebramaps:

(p,
tt + p

2
tt,p

1
tr + p

2
tt); I = 1,

= (p,*t+p
2*t+pf*Tp2*T,p,*r+p2*r); j2, (2.17)

(p,
tt + P

2*t,e02 tp1*~+ p2*T); I = 3,

wherep,,andp2 are theprojectionmorphisms~ x ER” into theirfactors.In
all cases,the identity morphismisgivenby evlto, andthe inversionsuperdiffeo-
morphismct:ERI~I_+ER’t’ is givenby

(—t,—r); I = 1,2,(~1
tt~

1
tT)= (2.18)

(—t,—ett); j = 3,

Remark. It is shownin section5 belowthat the homogeneousgeneratorsfor the
corresponding Lie superalgebrasof left invariant supervectorfields aregiven by

(a
1 j=12 ía1 j=1,3,

D0 = and D, = (2.19)
(a1+r01 j=3, ~a1+ra1j=2.

In what follows, it will be assumedthat D = a~+ a1 + rD~’,with,

D~’= o~2a1+ o~3a1 j = 1,2,3. (2.20)

3. Existenceand uniquenessof solutions to super-ODE’s

By Batchelor’stheorem,anysupermanifold(M, AM) is isomorphic(although
not canonically)to asupermanifoldof theform (M, F(A E)), whereir: E —~ M

is a smoothvectorbundle.Theproofof existenceanduniquenessof solutionsto
super-ODE’s in a supermanifold(M, AM) can bereducedto the sameproblemin
a gradedmanifold of the Batchelorkind. This is aconsequenceof thefollowing.

Lemma 3.1. Let a : (M,AM) —-4 (N,AN) be a supermanifoldisomorphism.
LetX bea supervectorfield on (M, AM) and let Vx be the maximaldomainof
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definition ofsomesolution, F: V~—~ (M, AM), to the ODEdefinedbyX

ev111 o DoF
t = evI

1 oF
t o X. (3.1)

Let a~X= (a’ )t o X o at be the supervectorfield on (N,AN) inducedby a
andX, andlet p~,andP2 be theprojectionsoftheproduct ER” x M onto their
correspondingfactors. Then, a o F o (Pt x a’ ° P2) is a solution to the ODE
definedby a~X,andits domainofdefinition, a(Vx), is maximal.Furthermore,
if F is a uniquesolution satisfying(2.6), then a oF o (p, x a~° P2) j5 also a
uniquesolutionsatisfyinga similar conditionfor superfunctionsin AN.

Proof We shallwrite DM, andDN, for the lifts of D to ER” x (M,AM), and
~I~I x (N,AN), respectively.The fact thataolo (p, x a~’° P2) is a solution
to the equationdefinedby a~X,is a consequenceof the following equalities:

ev1
110 ~ (p, x a~° P2) oF

t oat

ev~
110o (p, x a

1 ° P2) ~~M oFt ~at

= (a_l)toevloDTMoFtoat

= (a_l)*oevlol*oXoat

= ev1
110 ° (p, >< a~0 P2) oFt oc

t o (a_l)t oX o at

= ev(
110o (p, X a’ ° P2) oF

t oat 0 (a~X),

wherethe following factshavebeenused:

o (p, x ~ ° P2) = (p~x a’ ° P2) 0

evf,
10 o (p, x a~’° P2) = (a

1 )* 0 ev1
110.

The maximality of the domaincanbe easilydeducedarguingby contradiction,
andusingthe factsthat a is an isomorphism,andthat Vx was assumedto be
maximal.The uniquenesspartof the statementis provedsimilarly.

Remark.This lemmaimpliesthatif weknowhowto integrateODE’s in Batchelor
supermanifolds,thenwealsoknowhow to integratethemin anysupermanifold.
Moreover,thenon-canonicityoftheBatchelorisomorphismis not aproblem:Let
ussupposethata~:(M,AM) —* (M, F(A E1)), i 1, 2, aretwo isomorphisms
and that X is a supervectorfield on (M,AM). Then, the supervectorfields
(a,)~Xand (a2)~Xarerelatedby the isomorphisma2 0 (a1)_~hence,by the
lemma, their integralsare also related,andoncethe uniquenessquestion is
settled(cf. prop.3.2, andtheorem3.5 below), theywill definethesamesolution
in (M,AM).

Fromnowonweshallassumethat(M,AM) = (M,F(AE)), wheren : E
M is a smoothvectorbundle.For the sakeof simplicity, we shalloccasionally
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write M for the pair (M,AM). Let X E DerAM(M) be a supervectorfield,
andassumeF is a morphism,V~—* M, satisfying (2.4), and (2.5). As we
pointedit out in the introduction, the fact thatFt, and evI

1 1 aremorphisms
of superalgebras,makesit possibleto split the differentialequation(2.4) into
two equations:

evl D0 o Ft = evj oFt o X0 andt15 1=10 (3.2)
evl oD1 oF

t = evj oFt oX
1,

1=10 i=t0
whereX = X0 +X,, andD = D0 + D,, arethecorresponding7L2-decompositions
of X, andD. We shall assumethat D0, and D1 are the generatorsof the left-
invariant supervectorfields on ~ for one of the Lie supergroupstructures
listed in proposition2.1. Due to the first observationmadein section2.4, the
integralflow F only dependson the congruenceclassof D0, andD1, modulor;
whenceonly on a1, anda1, respectively.

Now, for the proofof the existenceanduniquenesstheoremwe shall follow
the methodsof ref. [7]. Let X be the supervectorfield on Vx definedby the
conditionsXop,

t = 0 andXop
2

t = P2toX. SinceP
2t is monic, it is easyto see

that the mapX i—f X is monic. We shall makeuseof the Type 1 structurein our
first few results,but onlyto applythemain resultof ref. [7, proposition3.2], and
to find explicitly the integral flow in termsof an auxiliary Type l-ER”-action,
b (seetheorem3.5 below). Oncethis is done,the questionof whetheror not
the integralflow definesa Lie supergroupactioncan bestatedas in theorem3.6
below,without having to compromisewith anyspecific choice.

Proposition 3.2. LetX0beanevensupervectorfieldon (M, AM) = (M, F(A E)),

andlet thenotationbe asin section2.3 above.Thereexistsa uniquesolution 1:
V~0—* M, to theequation

~ = ~ oX~,

satisfyingthe initial condition evI1 o = id. Furthermore, thesolution c1
satisfiesthefollowingproperties:

(i) ~ o X0 = o
(ii) ~ definesa Type l-ER’

11-action.

Proof This is simply theorem3 of ref. [7]. The only subtle point is this: Ac-
cordingto ref. [7], b definesa (local) ER-action.The statementthat it defines
in fact a Type l-ER”-action follows easilybecausea

1 o = 0.

Remark.The proof of this result in ref. [7] was carriedout with the help of
a linear connectiondefinedon the bundleE. The connectionwas only used
to havemanageableexpressionsof supervectorfields as derivations.Its role is
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unessential;in fact, the solutionfoundturnsout to beindependentof the linear
connection,asexpected(e.g.,onemayargueby uniqueness).Ontheotherhand,
it is interestingto notethatan essentialuseof the underlyingCOG flow of X is
madein ref. [7] in orderto determinethemaximaldomainof thesolution.Now,
if one proceedsnaively integratingthe local expressions(2.14) one can easily
get convincedthat, up to first orderin the odd variables,therewill bea unique
solution F of (3.2), suchthat F = Y(o) is the smooth flow on the coordinate

neighborhoodU generatedby X = ~ A’8~,andg(,) is the parallel transport
on E with respectto a connectionV uniquely determinedby the order-one
coefficientsof theodd partof the field X. In fact, onemaythink oft ~ g(,) (t)

as a curveon EndE, which in view of the initial condition (2.6) goesthrough
the identity at t = 0. But then, the differential equationfor g(,) in (2.14) is
simply the equationthatdefinesparalleltransporton E along Y(o)~with respect
to the connectionform whosematrix is (Be).

We shallnowturn to the integrationof odd supervectorfields.

Lemma3.3. LetX, beanoddsupervectorfieldin (M,AM). LetX0 E DerAM(M)
be even,andlet (25: V —* M = (M, AM) be its uniqueintegralflowas in proposi-
tion 3.2 (V c ER” x M). Letp,, andP2 betheprojectionsoftheproductER’

t’ xM
onto their correspondingfactors,and let a: ER” —~ ER” be the inversionsuperdif-
feomorphismon the Type 1 Lie supergroupstructureofER” (cf (2.20) above).
Define,

25
0=(p,x25)o(aop,xp2):V—*V.

Then,
(i) (25,. is a superdiffeomorphism whoseinverseis (2)~= p, x (2).

(ii)01 o 25,~’* o iv’, o = ~ * o [Xe,X,] ~
(iii) The integral flow of~,.’

t o ~, o J~is p: W—~ V, with

= it

2 + (it,~t) (it2

t 0 ~_,* o

W C ER” x V, andit,, andit
2 theprojectionsof~~~ix V into theircorresponding

factors.

Proof The first assertionfollows from the fact that 25 is an action: Indeed(cf.
ref. [1]),

(p, x o (aop, xp2))o (p, x ~P) = p, x o (aop1 ~

= p, x o (C0 x P2) = P~X P2.

The secondassertionrequiresalittle work to establishthe following facts:
(a) ~ (P, >< 25)* = (P, x ‘25)t (a1 +Xo), i.e., (p, x 25) is the integralflow

of a~+ X0, with no needof the ev-morphism(cf. proposition3.2 above).
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(b)a~~X, =ol3~.

(c) (coop, xp
2)*o~o =~0o(aop1 xp2)

t
(d) (coop

1 xp)
toO = —a,o(coop,xp

2)
t.

Now, thesemaybeprovedby showingthatbothsidesofthestatedequalitiesyield
the sameanswerwhenappliedto an arbitraryelementof the form pitf p

2
tg,

with f a superfunctionin ER”1 and g a superfunctionin (M, AM). Thus, for
(a),we have

f3~o(p, x~)t(p,tfp
2

tg) = ~(p,tf~tg)

= (P,t (a
1f)) (~

tg) + (p,tf) (fIt ° ~tg)

= (p,t(a~f))(~tg)+ (p,tf)(25t 0 X
0g).

On the otherhand,

(P, x ~25)*o ~ + ~o)(p,*f p2*g) = (p, x

+ (Pi x ‘P)
tp

1
tf(p

2
tX

0g)

(p,*(01f))(cJJ*g)+(p,
tf)(25*oX

0g).

Similarly, for (b):

fIio X,(p,*fp2*g) = [p,
t5

1(f0—f,r)]p2
tX,g = X,oD,(p,tfp

2
tg),

wherewehavewritten f = fo + ~ r, with fo, anf f, smoothfunctionson ER.
Theproofof (c) is equallyeasy,andthe proofof (d) comesdown to showthat

= —atl3
1f, for anysuperfunctionin ER’

11. But this follows from thefact
thatatt = —t, andatr = —r. Indeed,

= a
1(f0o~—f1oir)

= —f,~o~+f,’o~r

=

With (a)—(d) settled,the secondstatementis a straightforwardcomputation:

o o ~, o ~25* = o (p, x c25)* ~ ~

= (p~x c25)* ~ ~ ~ ~, ~25t + (Pi X c25)* ~ o o

= ~,. a X0 o X, a i25~ + ~_~* a X1 ~a~o (a op, X P2)
t °

= ~,._1* ~ ~ ~ ° ~t — ~_,* a o (a ap, X P2)t ° °

1* a X
0 a X, o — a X, a (aop, x P2)

t ° a

=~,.1oX0oXlo~,.*_~,.1*oX,o(aopixp
2)*oXoo~*

= ~_,* ~(~‘~~ ~ — ‘v’, ~ ~
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Finally, the third assertionis justa straightforwardcheck:On the onehand,

(a1+a1)a p
t = m

2*~,.~X,25,.* + (ir,
ti) (m

2*~,._1*[Xo,X,] ~t)

On the otherhand,

p
t a ~_1*~, ~,.* = it

2*~,._~*X,~t + ~(it,~z) (~0—’
t[x,,x,i ~

andit is clearfrombothequationsthattheright handsidesarecongruent(mod

Corollary 3.4. Let the hypotheses be as in thepreviouslemma.Thenecessaryand

sufficient conditions for having

(fI
1±a)a p

t = pt a (~‘tX, ~t)

without the ev-morphism acting from the left are

[X
0,X,] = 0 and [X,,X,] = 0.

Proof The right handsides of the two equationsin the proofof the previous
lemmaareequalif andonly if

(25 * a [X0, X,] a c25t = I * a [X,, X,] a

Sincebothsidesof thisequationarehomogeneouselementsof differentparity,
since~ and~25,._1* areisomorphisms,andsinceX i—f ~ ~Smonic,theassertion
follows.

Theorem 35. Let X be a supervector field on (M, AM)~and let X0, and X, be its
homogeneous components. Let (2~: V —p M = (M,AM) be the unique integral
flow of Xo as in proposition 3.2 (V c ER” x M). Let 1,. be as in lemma 3.3, and
let p: 3’V —* V (14) C ER” x V) be the unique integral flow of(25,.’ ~,

Then, there is a unique integral flow, F, of X satisfying the initial condition
evl,0 aF

t = id. In fact,
Ft = ~ a pt a

whereij: V —~ W is the uniquemorphismdefinedby the conditions

= p,tf and rjtir
2

tg = g,

for all superfunctions, f in ER’1’, and g in V.

Proof Notethat

(p, x ~o (a op~ x P2)) = ~o (C
0 xp2) P2,
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because‘25 is an ER”-actjon.Therefore,‘25O~~= P2t, andhence

= + (ir,tr) (it
2*~,.l*X~,p2*) )

= ,~(*~~+ (it,*r) (it2t~,.1*p2*X,) )

= ,i*(it2*~* + (m,
t~)(it

2*~*X,))
= ~* + (p,

tt)c25tX,,

whereusehasbeenmadeof ~J-~1*p2* = (P2 a 25,.’ )* = 25* (cf. lemma3.3-
(1)). Now, on the onehandwe have

(at +01) a Ft = a (X
0 + X,) + (p,

tr) (~* a X
0 a X,);

whereas,

F
t a (X

0 + X,) = ~25*a (X0 + X,) + (p,
t-r) (25*0 X, a (X

0 + X,)).

It is now clearthat the right handsides of both equationsarecongruent(mod
p,

tr).

Theorem3.6. Let X be a supervector field on (M,AM), and let X
0, and X, be

its homogeneous components. Letj = 1, 2, and, 3, label thedifferent Lie super-
groupstructuresof~h’~ as in proposition 2.1. Then, the following assertions are
equivalent:

(i) Xo, andX, generatethefollowing (1,1)-dimensionalLie superalgebra:

[X0,X,] =013X, and [X,,X,] =012X0 (j= 1,2,3).

(ii) The integral flow F of X satisfies the equation

(ai+0t+Dj’) oF
t =FtaX,

without the ev-morphism (D
1’ as in (2.20)).

(iii) The integral flow F ofX defines a Type j~ER’~’-action on (M, AM).

The next-to-lastequationin the proofof theorem3.5 aboveimplies that

tO1 = (~,*~)(~25*aX0) and tO1 = (p,
tr) (~*a X,).

It thenfollows that (a
1 + 81+ Di’) a F

t is actuallyequalto (andnot just con-
gruent (modp,tr) to) Ft a (X

0 + X,), if andonly if

a X0 a X1 = ~25*a X, a X0 — a X, and
(25* a X1 0 X1 = ~j,2~ * 0 X0,

andthe equivalencebetween(i), and (ii) follows.
To prove the equivalencebetween(i) and (iii) we shallneedthe specificLie
supergroupstructuresof ER” (cf. proposition2.1 above).Let {t,, t2, ~,, r2} be
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the gradedcoordinatesofER” x ER” and{t, t} thoseofER”. The mapp~3canbe
convenientlyexpressedin termsof u~as follows:

= m
tf +~2t,T2Ji,to (a~)f+Oj3t~ (el2_ l)p~to (a

1)f,

for all f E A~1~1(ER).
Now, let thenotationbeas in theorem3.5 above.The integralflow F ofX defines
a Typej ER”-action on M = (Al, AM) iff the following diagramcommutes:

~1 ><“~“2

w V

Rjo(~lXpl0~2)Xp2o~2 I . (3.3)

V M

We shallthenneedthe following formula:

[~i~a (it, xp~a it2) xp2a it2]t = [~i~o (it, xp,o it2) xp2a it2]
t

+ 0j,2 t~12 [!i, a (it, x p, a it
2) X P2° it2] 0

+
0j3 (e12 — 1) r, [p~a (it, x p, a it

2) X P2° it2]
t a 31,

wherewe havewritten it
1’

tt = t
1, it2tp,t t = t2, and,it2

tp,t-r = t
2. This may

be provedin astraightforwardmannerby the methodsof lemma3.3.
Since 25 is aType 1 action, the diagramabove commuteswhen ‘25 is placed
insteadofF, and~i, = ,u~. Therefore,on the onehandwe obtain

° (it, x p, a it2) x P2 0 it2]*F*

= [~jO (it, xp1 a it2) xp2o it2]*(~* + (p,
tz)(~tX,))

= a (p, a (it, xp
1 a it2) xp2o it2)]t

+ ((it, xp~a it2)
tp,tr) [~ a (p, a (it, xp

1 a it2) xp2o it2)]
t oX,

+ ~2 t~12 (ji, a (it, X Pi a it
2) x P2° it2) ~

+ Oj31~(e

12 — l)(~i,a (it, xp, a it
2) xp2a it2)*25*X,

= (~a (it, x o it2))
t + (r, + 12) (~a (it, x a it

2))t 0 X,

+ O~3r,(e
12 — 1)(25 a (it, x a it

2))
t oX~

+ i~

2r, t2 (c1 a (it, x a it2))
t a Xo. (3.4)

On the otherhand,

(it
1 x Ta it2)*F* = (it, xl a it2)*(~* + (p,

tr) (~)tX,))

(~a (it, x F a it
2))

t + (~o (it, x Fo it
2))

to X,.

(3.5)
Thus,everythingcomesdownto compare~1)a(it, x F a it

2), with (25o(it, x (25ait2).

Now we claim that
* * —1 *~ *

(25a(ir,xlait2)) = (~a(x~x~oit2)) +t2(it,x~,. oit2) X,’25 - (3.6)
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To prove this we may againassumethat 25tf ~,p~*fp
2*g,. (By complete-

nessof the productsheafon V, if the result is true for this particular form of
‘25

tf, the resultwill be true in general).Now

(25 a (it, x F o it
2fl

tf = ~(it, x F a it
2)

t(p,tf
1p2

tg
1)

= ~it,*fj((~ait2)*gj + t2(~ait2)
tX,g~)

= (it, x 25 a it

2)*(~p,*fjp2*gj) + t2(~it,*fj(~ a it2)
tX, gi),

wherewehaveput, f
1 = (fi)o — (f),r, because we permuted places with the

odd variable 12. Note that

it2
t~*X,gj = it

2*25,.IX,p2*gj,

because

c25
tcbtX,g, = p

2X, g = X,p2
t gi

= (~a_l)tx,p
2*gi

-~ it2
t25tX,gj = (~25la it

2)*~,p2tgi.

Therefore,

(~o (it, x Foit2))
tf = (~o (it, x ~a it

2)) f

+ t2((it, x ~ ait2)*~(p,*f1~,p2*gj))

= (~o(it,x~oit2))
tf

+ r
2((it, x ~a’ a it2)

t ~(~,p,*fj p*g))

wherewehaveusedthefact thatX, is anodd derivationto revert from .f~to f.
Thus eq. (3.6) aboveis true. In particular,the right handsideof eq. (3.5) is,

RHS of (3.5) = (25 a (it, x c25a it
2))

t + t
2(it, x a it2)

tX,~t

a (it, x a it
2))

tX, + r
2(it, x a it2)*X,~tX,).

If we now comparethis expressionwith the right handside of eq. (3.4), we
concludethat the diagram (3.3) commutes,if andonly if

(it, x ~,.‘ ait2)t~,~* = (1 + (

5j3 (e12 —1) )(~a (it, x (2) ait
2))

tX
1,

and,
(it, x a it2)*X,~*X, = o~2(‘25 a (it, x (25 a it2))

t a X
0.
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Equivalently,if andonly if

=(l+ôj,3(et2_1))25*aX, and (37)

~ 25* 0 X, = ~j2 ~ 0 X0,

wherewe haveusedthe fact that it, x 25,. a it2 is invertible, and its inverseis
it, x 25,.~a it2, andthe fact that

(~a (it, x 25 a it2)) a (it, x 25,.’ a it2) = 25,

(both assertionsare easyto check).Note the appearanceof e

12 in the right
handsideof the first equation.This follows from, (it, x ~25,.a it

2)
t e(Pi ~ ) * 1 =

e(00P1c~~2)*t,which is in turn aconsequenceof thedefinitionof ~,,. In particular,
it follows from theseequationsthat

0 X
0 = (1 + c~,3(e~— 1)) 25*0 X, a X,.

Forj = 1, and 3 this equationsaysthat ~25*a X, a X, = 0, and since25’ is
monic, [X,,X,] = 2X,o X, = 0. Forj = 2, the sameequationsays‘25k (2X0—
[X,,X,]) = 0.
On the otherhand, forj = 1, and2, the first equationin (3.7) saysthatX, a

25* = 25* a X,. Applying a1 on bothsides,andusingboth,proposition3.2, and
the statement(3.4) in the proofof lemma3.3, we get

25* a = 25* a a X,.

Now the original equationmaybe usedagainin the left handsideandreplace
° c25~’ by 1” a X,, to finally obtain, 25

t([X
0,X,]) 0. For j = 3 the

procedureis exactlythe same:Apply 0~on bothsides,thenuseproposition3.2,
the statement(3.4) in the proofof lemma3.3, andfinally equation(3.7) again
to substitutethe valueof ~, a 25t~ fl I

Example3.7.
Let Q (M) be the sheafof differentiableforms on the differentiablemanifold

M of dimensionm. The pair (M, Q (M)) is a supermanifoldof dimension
(m, m). Somedistinguishedsupervectorfields are:

(i) TheLie derivative,~x, with respecta vectorfield X in M,
(ii) The contraction,iX, with respecta vectorfield X, and,
(iii) The exteriorderivative, d.

Now, the integralflow of Lx is the pull-back, 25 of the integralflow of X. The
integralflow of Ix is givenby themapF

t = idt + t lx. Finally, theintegralflow
of d is givenby the mapFt = idt + t d. It is easyto constructa supervector
field thatdoesnot define anytype of ER” action. For example,X, = d + ix.
This is so because[X,, X,] = 2L~x.Theintegralflow of X~is given by the map
Ft = idt + z(d + ~ The readercan alsocheckdirectly thattheintegralflows
of d andiX do not commute.
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An exampleof supervectorfield defininga Type2 ER’1’ action is given by the
derivation, ix + d + 2r~.Its integralflow is Ft = 25*~(idt + r(d + iX)),
where25* is the integralflow of the vectorfield 2X.

For an exampleof a supervectorfield defininga Type 3 ER’1’ actionlet Id be
the identity mapof the cotangentbundle.Id can be viewedas a vector-valued
differentialform of degree1. Thecontractionof thisform with differentialforms
definesan algebraicderivationof degree0; the latter shallbe denotedby ~Jd~

Notethat if fl~is a differential form of degreep theni,d(fl(P)) = p/i~.The
integralflow of 11d is given by 25* fl~= e01fl(

0). Now, considerthe derivation
D =

1Id + ix. This is of type3 because[ix, 1IdI = iX. The associatedderivation
25_i * X, a 25,.* definedin lemma3.3 is justetix. By theorem3.5, theintegral
flow of D is givenby Ft fl~= ePt(/3(

0) + re
tixfl(p)).

Our next result statespreciselyunderwhat conditionsthe integralflows of
two supervectorfieldscommute.In order to keepthe notationsimple, theproof
is given only for completesupervectorfields. The generalcaseconsidersthe
intersectionof the domainsof the flows and it is handledsimilarly. Note that
in the COG category,the statementthat the flows ~ and ~‘ (of X

0, and Yo, resp.)
commuteis thatfor all t,, andall t2,

t~tia V/i2 = Y1t2ac~ti.

Thus,the statementfor theZ2-gradedcategoryhasto usethe twist morphism,
T: ER’l’ x ER” —~ ER” x ER’t’, definedby the conditions

= P2
t and p

2
tTt = p,t,

where,p,, andP2 arethe projectionsof the productER” x ER”.

Proposition 3.8. Let X = X
0 + X,, and Y = Y0 + Y, be supervector fields on

M = (M, AM), and let F, and 6 be their corresponding integral flows. Then, F,
and 9 commute, i.e.,

(*i xFo,2)o(To(t1xop1o,r2)xp2o,r2)
R

1I1 >< n” >< M l~’I’ >< MI r

R”1xM M

commutes,if andonly if

[Xo, Y] = 0 and [X,, Y] = 0.

Proof The methodsof the proofarethe sameas thoseof theorem3.6. We shall
write, Ft = 25* + 1,25*X,, and9* = ~JJt+ ~, W~Y,, whereboth, 25, and~P—
beingthe flows of X

0, and Y0, respectively—defineType 1 supergroupactions
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of ER” in M. Thus,on the onehandonefinds (cf. eq. (3.6) in thm.3.6),

(it, x 0a it
2)

tFt = (25°(it, x Wait
2))

t + r
2(it, x W,.’ a it2)

tY,25t

+ t,((25 a (it, x Wait
2))

t + t
2(it, x W~a it2) *Y,25t)X,.

On the otherhand,

(it, x F a it2)
t0t = (Wa (it, x 25° it

2))
t + t

2(it, x 25,.’ a it2)
t~,Wt

+ t,((W a (it, x 25o it
2))

t + z
2(it, x a it2) *~,W*)Y,

Thus,acting on both sides of this equationwith (T a (it, x op~a it2) x P2

it2)
t, wesimply get r,, and12 interchanged.Thus,thediagramin thestatement

commutes, if and only if, the following equationsaresatisfied:

25o(it,x Wait
2) = Wo(it,x25oit2),

(it, x a it2)
tY,25t = (Wa (it, x 25 a

(25o (it, x Wait
2))

tX, = (it, x 25,.~a it
2)*~,Wt,

(it, x W~’a it2)
tY,25tX, = —(it, x a it

2)
tX,WtY,,

wherethe minussign in the lastequationis the resultof writing 121, = —1,12.

We now substitutethe first equationin the secondandthird, andthe resulting
three in the last one. Wefinally act on such equations from the left with, (it, x

a it
2)

t, and (it, x W,. a it
2)

t, appropriately, and end up with the following
system of equivalent equations:

25 a (it, x W a it

2) W a (it, x 25 a it2), X, a Y, = —Y,a

25* y~= 25t W* X, = X,

andtheseequationshold true if andonly if

[X0,Y0] = 0, [X,,Y,] = 0,

[X0,Y,] = 0, [X,,Y0] = 0.

(Note that these equations are not equivalent to [X, YI = 0). LI

Remark.In theC°°-categorythereexistsabijectionbetweenthe setDerCOG (M),

of completevectorfields on a smoothmanifold M, andthesubset

Hom(COG(M),COG(ERx M))’°,

of algebramaps25*: C°°(M) COG (ER x M), satisfying
(i) 25~t= id, and,
(ii)

25t * a * = + 12 for all t,, andt
2 in ER,

where25tt = evIt ~ 25* E AutCOG (M), for eacht e ER.
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In orderto find asimilarcharacterizationin the7L2-gradedcategory,notefirst

that if F E Hom(AM(M),AnI~lxM(ER x M))R (whereA~IIXM denotesthe
structuresheafofER’

t’ x (M,AM)), then,

Ftf = 25tf + tZ,f,

for anyf eAM(M). It is easyto verify thatZ, mustbe an odd ER-linearmap

Z,: AM(M) --4 A,~oXM(ERx M), satisfying
Z

1(fg) = Z,(f)25
t(g) + (_l)1f125t(f)Z,(g),

for all f, andg in AM (M), andfurthermore,that
25 e Hom(AM(M),A~oXM(ERx M)). Our last result in this sectionsaysthat
there is a similar correspondence in the Z

2-graded category. The statement and
its proof are simple rephrasings of the proof of theorem 3.5, and the previous
lemmas.(We areindebtedto Prof.J. Muñoz Masque, for bringing this point to
our attention).

Proposition3.9. Let M = (M,AM) be a supermanifold,andlet AuI~I~M,and
A~OXM,bethestructuresheavesofthesupermanifoldsER” xM, andER’

t°xM, re-
spectively.Thereexistsa one-to-onecorrespondencebetweenthesetDer AM (M),

ofcompletesupervectorfieldson (M, AM), and thesubset,

Hom(AM(M),AuI~lxM(ERX

of superalgebra maps Ft, such that
(i)F

0
t = evI

1 ~ oF
t = id.,

(ii) Thehomomorphism25* ~ Hom(AM(M),A~oXM(ERx M)) associated to
F, defines an ER-action on M, andnaturally extendsto an

(iii) TheoddER-linearmapZ,: AM(M) —~ A~IIoXM(ERxM) associatedto F is
suchthat

25toZ
1 Ep2DerAM(M);

that is, 25* a 7, comesfrom an oddsupervectorfieldon (M,AM).

(Note that the third condition means that the map 25* a X,, which in principle
is just aderivationfrom AM into ~ actuallydefinesan odd supervector
field on (M,AM)).

4. Integral flows and Lie superderivativesof superforms

Thissectionis includedfor the sakeof completeness.We shallproceedalong
the linesof refs. [10] and [12]. Our aim is to define the Lie derivativeof any
superform, w, on a given superdomain, with respect to any supervector field,
X. Moreover, we want to relate our definition to the integral flow F, of X, and
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also, be able to prove that the usual algebraic characterization given in terms
of interior multiplication and exterior differentiation holds true. Our guiding
principle hasbeenthe fact that the algebraicformulafor Lie superderivatives,
also called the Cartan formula, Lx w = d a i(X) w + i(X) a dw, makes sense
regardless of the peculiarities of the field X (i.e., it is not necessarythat its
homogeneouscomponentssatisfy [X0,X,] = ó~3X,,and [X,,X,] = ~2X0).
We thusstartwith the following:

Definition 4.1.
Let X be a supervector field on a superdomain (M,AM), and let F be its

unique integral flow satisfying the initial condition, evIt,,,oF
t = idt. Let w be

any superform on (M, AM). TheLie superderivativeof w is thesuperform,L~W,

given by
Lxw = evI’ ~oDaFtw.

Proposition 4.2. TheusualrelationshipbetweenLiederivativesonforms,exterior
differentiation,andinterior multiplication, holdstrue in the theoryofsuperman-
ifolds; namely,

Lxw di(X)w+i(X)dw.

Proof It sufficesto verify thatbothsidesyield the sameanswerwhenw = f,
andwhen w = df, for anysuperfunctionf. Now, for w = f, wehave,

Lxf = ev~
10oDoF

tf

= evl
10oF

toXf

= Xf = i(X)df,

whereusehasbeenmadeof the differential equationfor the flow of X, the
initial condition,andthedefinition (asin ref. [3]) of theexteriorderivativeon
superfunctions.
Let usnow assumethatw = df. Let d, and du, bethe exteriordifferentiation
operatorson thesupermanifolds(M, AM), and ER’L’, respectively.Therefore,the
exteriordifferentiationoperatoron ‘ x (M, AM) is definedby the conditions

doit~=it~’odu and dait~=it~ad.

~F* commuteswith d”, thenmeansthat d a Ft = Ft a d. Moreover, the
operatorsd, andD commutewith eachother, as canbe checkeddirectly from
the definitions. With these preliminaries in mind, one now has the following:

Lxdf = evI
1 0oDoF

tdf = evI
1 0oDo dF

tf

= evI
1 ~ a do Do F

tf = d a ev~
10aD a F

tf

= doev~
10aF

taXf= d(i(X)df),
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wherewe haveusedthe superdifferentialequation,andthe initial condition.LI

In the casewhenthe integral flow F definesa Lie supergroupactionof ER” in
(M, AM) we cansayevenmore:

Proposition 4.3. Let X be a supervectorfield satisfyinganyoftheconditionsof
theorem3.6, andlet F beits uniqueintegralflowsatisfyingthe initial condition,
ev~0F

t= idt. Then, for anysuperformw,

FtLxw = DaFtw.

Proof This is a straightforwardverification using, w = f, and w = df, for
anarbitrarysuperfunctionf. The only difference with proposition4.2 aboveis
thatThm. 3.6 now guaranteesthat the superdifferentialequationsatisfiedby F
isDF*=F*X. LI

5. Left invariant superfields on ER’1’

Following ref. [1], a Lie supergroup is a supermanifold (G, AG), with a pre-
ferredunderlyingpoint, e E G, andtwo morphisms,

a: (G,AG) x (G,AG) —* (G,AG) and a: (G,AG) —f (G,AG),

satisfying
(i)/1o (po (p, xp

2) xp3) = ~io (p~xpo (P2 xp3)),

(ii)/1 a (Ce x id) = id = ~ia (id x Ce),
(iii)/2o(axid)=Ce=pa(idxa).

The left actionof (G,AG) on itself canbe expressedin termsof ~.i as follows:
Let {x’,O”} be a local systemof coordinateson (G,AG). Assume

= F(p,*xip2txj;p,*O~~p2*0v)

Then
L

tf = F(x,~,x~ 9,~’,
0v)

with
L

tx,~= x,~ and L*0,M = 0,0.

This morphismis invertible, andits inverse,L’, is given in terms of p, anda
as follows: write

{ji a (a op, xP2)}f = ~(p,tx~p
2

tx’p,t0°p
2

t00)

Then
L’*f N(x,~,x~020,00),

with
L’tx,’ = x

1~ and L’
tO,° = 0,0.

We shallillustratethe useof L in the following examples:
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Example 5.1. Let ER’t’ be considered with its multiplicative structure; in terms
of the local coordinates{x, 0},

jfx =p,txp
2

tx +P,tOP2tO and /2*0 =p,txp
2

t0 +p,t0p
2

tx.

Let GL(111) be ‘ with the point x = 0 removed,and structuresheafthe
restrictionof thatof ER” to ER — {0}. Then, GL( 11) is a Lie supergroup(cf. ref.
[11). The inversionmorphismis given by

= -~- and atO =

The morphismL referred to above is given by

Ltx = x
1x + 0,0 and L

tO = x,0 + 0,x,

andits inverseis

and L_1t0=-L(0_~±x).

Let X = (fo + f,0) a~+ (g
0 + g,O) 8~,be an arbitrary supervector field on

(ER” )t Then, X is left invariant,if andonly if

X = LtXL_1* = (L*XL_l*X)a~+ (L*XL_1*0)30.

It is then easy to check that X is left invariant, if and only if it is of the form

X = ‘~-o(xO~+ 0a~)+ )~,(x30 — 0a~),
with )~o,and ..~, real constants. Note that in this case (assuming )LØA, ~ 0),

[X0,X,] = 0 and [X,,X,] =

Theintegralflow of X is foundas follows: First, it is easyto checkthat the map,

25
tx = eAo1 x, 25*0 = e~010,

is theintegralflow of the evenpart X
0,satisfyingfJ~25* = 0 (i.e., as if X, 0).

As we have seen, the integral flow of X0 + X, is given by F
t = 25* + 125*0 X,.

It is theneasyto checkthat

Ftx = e~1(x — ).,tO), FtO = e~0I(0 + ~,rx).

Example 5.2.
Now considerER’i’ with the Type 2 Lie supergroup structure: In terms of the

local coordinates {x, 0},

= p,tx + p
2

tx + P,t0 P2t° and /22*0 = Pit0 + P2t0~

The left multiplicationmorphismL is,

Ltx=x,+x+0,0 and LtO=0,+0,
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andits inverseis,

L’tx = —x, + x — 0,0 and L’tO = —0, + 0.

Let X = (fo + f,0) 8~+ (g
0 + g,0) c9~,be a supervector field on ER”. Then,

the condition, X = L*XL_I*, for left invariance,leadsto the following: X is
lefi invariant, if andonly if it is oftheform,

X =

2o0x + 2, (ae + O8~),

with 2~,and A, real constants. Note that, if A~A, ~ 0,
2

[X
0,X,}= 0 and [X,,X,] = 2~~i_X0.

The integralflow of X is found as in the previous exampleandis given by

F
tx=x+2

0t+21t0 and F
tO=0+2,r.

Remark. It is interesting to notethat thereis a Lie supergrouphomomorphism
(local isomorphism)betweenthe Type 2 supergroupstructureof ER”~,andthe
supergroupGL(lll) ofExample5.1 above.This isthemapW: ER” —~ GL(ljl),.
givenin termsof local coordinates{x,0} of ER”, and{y,~}of GL(ljl) by

Wty=ex and Wtc~=eX0.

It is a straightforwardmatterto checkthatthisis the unique(locally invertible)
morphismsatisfying

/10 (Wop, x Wop
2) = Waji2,

wheredU and/22 areas in thepreviousexamples.

Example 5.3.
Finally considerER’

t’ with the Type 3 Lie supergroup structure:In termsofthe
local coordinates{x, 0},

= p
1

tx+ p
2x and 11*0 = e~~2*Xp,tO+ P2

t0.

The left multiplicationmorphismL is,

Ltx_—x
1+x and L*O__ex0,+0,

andits inverseis,

L’
tx = —x~+ x and L’tO = _eX_X1 0, + 0.

Let X = (fo + f,O)8~+ (g
0 + g,0)00,be a supervector field on ER’

1’. The
condition,X = L*XL_~t,leadsthis time to the following: X is lefi invariant, if
andonly if it is of theform,

X = Ao (O~+ 0O~)+ 2,00,
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with 2o, and 2, real constants.Note that

[X0,X,] = —20X, and [X,,X,] = 0.

The integralflow of X is foundas in the previousexamples,andis given by

F
tx = x + Aot and FtO = eA0t 0 + A,r.

In all theseexamples,the integralflows of the left invariant supervectorfields
underconsiderationdo not defineType 1 ER”-actionson the supergroupsthey
are respectively defined. In fact, [A’,, X,] ~ 0 in 5.1-5.2, and [X

0, X,] ~ 0 in
5.3 (SeeThm. 3.6).Ontheotherhand,theintegralflows in 5.2, and5.3, trivially
recoverthe multiplicationmapji~of proposition2.1 for Ao = I = A,.

Remark.
Let Der AG(G ) .4c (G) be the left invariant derivations on (G, AG). Notethatthe

Lie supergroupstructureswe aredealingwith heredo not satisfythe properties
statedin ref. [31; namely,thatthe functionandexteriorfactorscan berecovered
from theleft invariantsupervectorfields. In particular, it is not true thatCOG (G)

is isomorphicto

C0(G) = {f ~ A~(G)I Xf 0, for all odd X E DerAG(G)A0~}.

In bothexamplesabovewe obtain

C0(G) = {f ~ A~(G) If = c0 c0 constant} ER.
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